skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Slavin, James A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An important discovery of MESSENGER is the occurrence of dayside disappearing magnetosphere (DDM) events that occur when the solar wind dynamic pressure is extremely high and the interplanetary magnetic field (IMF) is both intense and southward. In this study, we investigate the DDM events at Mercury under extreme solar wind conditions using a three‐dimensional (3‐D) global hybrid simulation model. Our results show that when the solar wind dynamic pressure is 107 nPa and the magnitude of the purely southward IMF is 50 nT, most of the dayside magnetosphere disappears within 10 s after the interaction between the solar wind and the planetary magnetic field starts. During the DDM event, the ion flux is significantly enhanced at most of the planetary dayside surface and reaches its maximum value of about 1010 cm−2 s−1at the low‐latitude surface, which is much larger than that under normal solar wind conditions. During the DDM events, the dayside bow shock mostly disappears for about 9 s and then reappears. Moreover, the time evolution of magnetopause standoff distance under different solar wind conditions is also studied. When the solar wind dynamic pressure exceeds 25 nPa and the IMF is purely southward, a part of the dayside magnetosphere disappears. Under the same IMF, the higher the solar wind dynamic pressure, the faster the magnetopause standoff distance reaches the planetary surface. When the solar wind conditions are normal (with a dynamic pressure of 8 nPa) or the IMF is purely northward, the dayside magnetosphere does not disappear. The results provide a clear physical image of DDM events from a 3‐D perspective. 
    more » « less
  2. Abstract Mercury possesses a miniature but dynamic magnetosphere driven primarily by the solar wind through magnetic reconnection. A prominent feature of the dayside magnetopause reconnection that has been frequently observed is flux transfer events (FTEs), which are thought to be an important player in driving the global convection at Mercury. Using the BATSRUS Hall magnetohydrodynamics model with coupled planetary interior, we have conducted a series of global simulations to investigate the generation and characteristics of FTEs under different solar wind Alfvénic Mach numbers (MA) and interplanetary magnetic field (IMF) orientations. An automated algorithm was also developed to consistently identify FTEs and extract their key properties from the simulations. In all simulations driven by steady upstream conditions, FTEs are formed quasi‐periodically with recurrence time ranging from 2 to 9 s, and their characteristics vary in time as they evolve and interact with the surrounding plasma and magnetic field. Our statistical analysis of the simulated FTEs reveals that the key properties of FTEs, including spatial size, traveling speed and core field strength, all exhibit notable dependence on the solar windMAand IMF orientation, and the trends identified from the simulations are generally consistent with previous MErcury Surface Space ENvironment, GEochemistry, and Ranging observations. It is also found that FTEs formed in the simulations contribute about 3%–13% of the total open flux created at the dayside magnetopause that participates in the global circulation, suggesting that FTEs indeed play an important role in driving the Dungey cycle at Mercury. 
    more » « less